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PREFACE

This Technical Note was prepared for the National
Aeronautics and Space Administration under Contract NASr-21(03),
which is monitored by The Dynamic loads Division, Langley
Research Center. The results reported here are an extension
and elaboration of those presented in AQ~IIO~NASA, RAND's
final report on the contract, which was submitted to
Dr. Thomas L. K. Smull, Director of Grants and Research
Contracts, NASA, on 26 December 1963. The concern here is
with the objectives of Phase 11 of this research program,
namely, the characterization of the dynamics of boost
vehicles in the presence of external excitations. The
primary investigations concerned the question of whether
linearized analyses of boosgt vehicles provide acceptable
predictive techniques for determining the dynamical environ-

ment of the vehicle when the governing differential equations

are nonlinear and driven by external (stochastic) excitations.




1. The Governing Equations in Perturbation Form

The mathematical basis for the present considerations
is the ccmplctagnonlino&r perturbation equations of a hocyt
vehicle as developed in Reference [1]. we give here a brief
review of their derivation together with certain additional
results which may be useful in conjunction with the homo-
geneous problem.

Let f{X(t)] denote the column matrix of dynamical

variables that appears in the trajectory (rigid body)

equations of a boost vehicle when these equations are
reduced to first-order differential equations, and let
{Y(t))} denote the remaining dynamical variables (again
referred to first-order differential representations). The
dynamical state of a boost vehicle is thus described by the

system

a (X(t)} (F(x(t), Y(t), t))
(1.1 y.c3
{(Y(t)} (Gx(t), Y(t), t)}

7

H

Since the trajectory equations usually ignore cerfain terms,

it is assumed that the trajectory equations are given by

1.2 &£ xw) = Bx@w, V),

where

(1.3)  [(FX(£),0,8)) = [KEX(t), t)) + (K&X(t), )}



Here (X(t)] denotes a solution of the trajectory equations
(1.2), and the column matrix {K(i(t), t)] represents the
terms that are ignored in the trajectory calculations.

S8ince trajectory calculations have been highly refined
over the past decade, it is assumed that an exact solution,
{%(t)}, of the trajectory equations (1.2) is known. As
shown in Ref. [1], an expansion of the dynamical state

about the trajectory state, that is
(X} = (X@®)] + (x@®)}, (¥} = (0] + {y(®©)} ,

leads to the following ayatem'ot equations:

{x(t)]

.
i

(1.4)

.y

(x ()} {‘{x(i, )}
.Q.

i
]

{y(t)}

el
>

(y ()] tig(i' 0, t))

In this system, the matrices A, B, C, D are known functions
of the rigid-body trajectory solution i(t) (see Eq. (34)
of [{1}]), and hence are functions of the time, and the second-
and higher-order terms in the variables ({x]}, {(y] are de-
noted by ﬁ

Noting that {K(g, t)}, rather than {?(i, 0, t)1,
appears in thaue‘equatinns, the nonlinearities involved in
the trajectory equations have been eliminated. This is
indeed a marked simplicifcation since the trajectory equations

are the principal sources of kinematic nonlinearity.




To simplify the ensuing discussion, it is useful to

introduce the following notatdion. Set

{x(t)}
(1.5) {u(t)] = { }

{y (1)}
{{xé’i, )}

(1.6) fg(t)} = { - o
(tax, 0, £}

and
%

A B
(1.7) ’! =
¢ B
‘

Thus, if the second- and higher-order terms (the X-terms
in (1.4)) are denoted by (f(u, t)], the system (1.4)

becomes

(1.8) $ () = Kt @) + 8W®)) + (1@, O,
with

(1.9) (£(0, t} = {0} .

The work reported in Ref. [1] dealt with the homogeneous

problem, namely, the system

(1.10) g? fu(t)) = wet) lule)} + (£, )]




that is obtained from the system (1.8) by deleting the
inhomogeneous terms {g(t)}. (The condition expressed by
(1.9) shows that (1.10) is the homogeneous system corres-
ponding to (1.8).) Physically, this problem deals with the
stability and load enviromment of a boost vehicle in the
absence of any external environmental excitations (wind,

shears, gusts, etc.) that are not included in the trajectory

equations (1.2). Since the analysis of boost vehioles, at
least in the preliminary design phase, does not usually
rely on the nonlinear system (1.10), but rather on the

linesarized version

(1.11) {b(t)} = W(t) (h(t)} ,

g.‘a

and even more often on the linear version with constant

coefficients,

(1.12) {(h(t)} = W(T = constant) {B(t)} ,

3o

two basic questions must be answered. The first is: Under

what conditions does the linear system (1.11) exhibit the

game behavior as the nonlinear system (1.10)? The second

8t conditioss does the linear system with
constant coefficients (1.12) exhibit the same behavior as

the nonlinear system (1.10)7

These questions are answered in Ref. [1]. Definite
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criteria are given, which ensure that the linearized analyses
adequately reflect the behavior of the nonlinear systenm.
Explicit formulae are also presented by which the differences
between the solutions of systems (1.11) and (1.12) may be
computed during the initial phase of the boost process.
The reason for this inclusion is that the basic results on
the equivalence between systems (1.10), (1.11), and (1.12)
are asymptotic-~valid for large times.

A particularly useful extension of the results of
Ref. [1] is as follows. Let S be the point set in the N-
dimensional space with radius vector {u(t)] that is the
initial~condition set for the complete homogeneous pertur-
bation equations (1.10). By the results given in Bec. 4
of Ref. [1], we know that

(1.13) lim U fu(t) - (h(t)3ll = 0
t-»T

provided

(1.14) {(h(0)} = {u(@)] + [(K(T)} ,

T
(1.15) {K(T)] = fo ElO0(t@M), A) ar .

‘Here g(t}"l denotes the inverse of the fundamental normal
matrix H(t) associated with the linear system (1.11);
that is,




(1.16)  $¢ H(®) = M(t) H(), EO =1,

aan (a®} = B (O] .

This result telis us that we can find an initial condition
(1.14) for the linear system (1.11) such that the linear
system and the pnonlinear system (1.10) have the same
dynamical state at time T. Unfortunately, the column
matrix {K(T)} which determines the appropriate initial
condition for the linear system depends on the unknown
solution {u(t)] of the nonlinear system (1.10). However,
Bq. (67) of Ref. [1] gives

T
(1.18) 1 kMt < /2 fo EEtool - g clfu)iBoa

where g(i) is the Lipschitz function for the nonlinearity
{(fQu(t), ©)] : “

N
| ti(ul’ ..‘uw,t) - Ii(vl, R vn,t)f < g(t) 3213 ay - vjl
In terms of the bounds for | Elo) 8 and U {fu@a)} 1§
given by Eqs. (58) and (56) (which depend only on the known
functions g(t) and W(t), the right-hand side of (1.18)
can be replaced by an upper bound which is a known

functional of g(t) and ¥W(t). This gives, say,




(1.18) I (x(m} I <B(D) ,

‘and B(T) is a monotone nondecreasing function of T with
B(0) = 0. 1If, for each poist P of S, we comstruet
‘an N-dimensional sphere R,(T) with center at P and with
‘radius B(T), then the initial point @ given by (1.14)
for the linear system for which (1.13) holds will be such
that Q C R,(T). Hence, for the point set (see Fig. 1)

(1.20) BT = UJ R (D
Pesg ap

as the initial-condition point set for the linear system
(1.11), the solution manifold of the linear system will
contain solutions which satisfy (1.13) at time T. From
this mnd the monotone property of B(T), it follows that
if the design of the boost vehicle is acceptable for all

solutions of the linear system (1.11) that result from the

initial condition set (1.20) for given T, then the design

is acceptable according to the &c?uni nonlinear system

(1.10) for all values of the time less than or egqual to T.

In addition, if we substitute (1.14) into (1.17), we have

(1.21) {n(t)} = B(t) {u(0)} + H(t) {K(M)} ,

where H(t) {u(0)} is what would be obtained from the

linear system 1if the initial conditions for the complete



‘nonlinear system were used. It thus follows that

1 (b)) - B u@] K< U@ - ¥ (RM) I,

;and hence, by Eq. (58) of Ref. [1] and (1.19),
(1.22) H{n(e)) - g(t){u(ﬂ)}iAS.B(T) axp{ xlfzjzﬁg(r)ﬁar } .
This last result shows the effect of the different initial

conditions that must be used -for the linear system; that

is, the effect of using the set H(T) rather than 8.




2. The Inhomogeneous Problem

The natural counterpart of the studies reported in
Ref. (1] 18 an examination of the mathematical and physical
" foundations of the dynamical analysis of boost vehicles
when the dynamical state of the vehicle is a consequence
of external excitastions~-the inhomogeneous problem. Of
primary concern are the (random) excitations of the system
that result from the side wind, gust, and wind shear
environment to which the vehicle is subjected during its
ascent. During the course of this study, a bibliography of
the aerodynamic environments of boost vehicles was prepared.

This is given in Appendix I,
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3. The Rigid-Body Excitation Problem

The governing system of equations appertaining to the
inhomogeneous problem is that given by Eq. (1.8).

Since the system (1.8) results from the complete
dynamical system (1.1) when an expansion is made about a
known trajectory solwtion (X(t)] of the system (1.2), the
first problem to be resolved is to determine just what exci-
tation is assumed for the rigid-body (trajectory) system.
1f the excitation of the complete system (1.1) is described
explicitly, the answer is obvious; the excitation to be used
in the rigid-body system (1.2) is the explicit rigid-body
excitation. On the other hand, if the excitation is the
result of a random process, the answer is8 by no means obvious.
This is due to the fact that the rigid-body sclution {i(;)}
is aspumed to be an explicit known function of the time,
and hence, since {i(t)} is 8 solution of (1.2), the
excitation part of the matrix {H(i(t), t)] must be an
explicit function of the time and {i(t)}. Since the
trajectory equations (1.2) are not assumed to contain all
terms that would result from the complete system (1.1) on
setting (Y(t)] equal to zero, there is no problem of
consistency involved in taking {K(i(t), t)}] as an explicit
function of the time and ig(t)}. even though {F(i(t), 0, t)}
results in part from & random process. The problem of deter—
mining the appropriate external excitation part of

{H(X(t), t)] when the system is subjected to an external
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‘excitation that results from a random process is called

‘the rigid-body excitation problem. :

¥

There are two principal nAtisﬁ%ing circumstances in
‘the resolution of the rigid~body axéitxtian'gwabiaa, The
first is that it is desirable to include as much of the
excitation in the rigid—body equations as possible. The
resulting trajectery solution would thereby contain the
principal effects of the excitation, and hence one might
hope thni the solution of the system (1.8) would predict only
small differences between the true dynamical state and the
dynamical state represented by {%{t)}. The second is that,
from the statistical pdiut of view, it is desirable that the
rigid-body exeitation function be taken as the mean of the
actus]l randos excitation function. If this is done, RBq. €1.3)
shows thet the excitation matrix (K(X(t), t)] will contain
the random portion of the excitation and in addition, this
random portion will have zero mean.

A solution of the rigid-body excitation problem that
holds good in all instances is obviously impossible. A
solution will have to be made in each particular design
situstion, and will depend on the combination of many

s

other circumstances in addition to the two cited above.

¥hatever the particular solution of this problem, it is
most important to note that {K(X{(t), t)}, nmot (H(X(t), t)},
containg any and all statistically specified excitations.




]

- e o SR s

Th# gavarnin@vayateulaf equations is
@) & )] = X (u0)] + (2, 0] + (8B,

wvhere

4.2) (10, )} = (0}, (gz(u, t)}'iu(t,%ﬂu 0,

and where the excitation matrix ({g(t)} 1is given by
Bqg. (1.8):

{(KCX, )] }

(4.3) {g(t)} = { -
{(Gx, 0, t}

Under linearization, the system begomes

¥
e

(4.9 § [H®)) = W) [0} + (&) .

The same basic question arises in conjunction with the
inhomogeneous systems (4.1) and (4.2) as arose with the
homogeneous systems: Under what conditions will the
dynamsiocal state predicted by the linear system (4.4) provide
an acceptable déscription of the dynamical state that would
be predicted by the actual nonlinear system (4.1)? The
following alternative question was ulso\considered. Under

what conditions can we find a matrix X(t} and & column
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matrix {k(t)] such that a solution ({s(t)}] of the linear

system
(4.5 g (8(8)] = () (s(8)] + (k(t)]

provides an acceptable description of the dynamical state
of the non-linear system satisfying the governing system
of equations (4.1)?

Although a substantial portion of the effort during
the study was expended on attempts to resolve the above
questions, no analytic methods could be found whereby even
partial answers could be obtained. The results of all
attempts were inviriably negative. The most we can attempt
to do here is to give some indication as to the sources of
the difficulty.

First, the linear system (4.4) contains only the exci-
tation function as determined by the trajectory solution
{i(t)}. This is seen from Eqs. (4.3). On the other hand,
even though ({£(0, t)} = {0}, {f(u, t)] contains terms
that depend on the external excitation. Thus, the nonlinear |
system (4.1) is intrinsically different from the linear
system (4.4) since the nonlinear terms in (4.1) comtribute
to the excitation in addition to the contributions.from
{g(t)]. 8tated another way, the linear system (4.4) has
ite excitation uniquely determined by the external environm‘

ment and the corresponding rigid-body trajectory~-a situation
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obviously eontradicted by the fact that the external
excitation of the actual physical system is determined by
'the complete dynamical state, not just that part of the
’dya&n&aui state described by the rigid-body trajectory
solution. (

Becond, even assuming that t%a system (4.1) is
_deterministic (the mystem is subjected to explicit, kmown
excitations, not random processes), no general conditions
are known in the present literature nor could any be found
under which the linear system (4.4) or (4.3) provides ade-
qute information concerning the dynamical state of the
nonlinear system (4.1). On the other hand, numerous examples
can be found in which the linear system (4.4) or (4.5) con-
verges while the nonlinear system diverges.

| Pinally, if the nonlinear system {4.1) is driven by
a2 random process, the situation is only compounded.

comparison with the mean and variance associated with the

same system linearized about a motion of the homogeneous

Markov continuous~parsmeter process u(t) such that the
increment between times ¢, and t, is & sum of small
increments du(t), each which is Gaussian with mean m dt

and variance czdt (unless otherwise stated, we shall use
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% e
the notation of Ref. 2, which see). In particular, we

consider
(4.6) du(t) = mlt, u(t)]ldt + o(t)dy(t),

where the y(t) process is the Brownian~motion process
"with variance parameter 1; that is, it is a real Gaussian

process with independent incremensds and
Ely(ty) - y(t)) = 0, E{lyty) - y(t1%) = Lty =t | .

If p(s, g;’t. ) denotes the transition probability-
distribution function from the state t = s, u = ¢ to the
state t = T, u= ﬁ, then we must solve the Kolmogonov~

Fokker-Plank diffusion equations:

(«i.’i')(-!’"’(8 o m +§;,- (m(T, Wp'(s, &; T, W]

- gqn’ 27p' (anzg; LM .o,

' “éﬂ(ﬂr g; T, M
an

’

1 n>e,
Tes 0 <z

\p(u, g T, M

If we set

(4.8)  m(t, u(t)) = Au(t) + £(t, u(t)) ,
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the linearized equation corresponding to (4.8) is
(4.9) av(t) = A(t)v(t) + c(t) day(t) .

Hence, a comparison of the linear equation (4.9) with the
nonlinear egquation (4.6) involves s comparison of the
faolntiua of p(s, z; T, 7 of (4.7) with the solution

P(s, ®; T, 1) to the equations that are obtained from 4.7)

when m(T, ) is replaced by A(T)y, namely

2 |
(4.10) ( %%i- o? 3% | 0

+ %5 [Anp'] - QW~;;Q~

¥

\ P' = ar/fam,

iﬁl n >§ 3
\ P(s, £; T, M

Tes - i\O n<e

This in itself is a very difficult problem, not to mention
the fact that for even the simplest nonlinearities the
system (4.7) is apalytiecally uatxactubiuq‘ | |

The converse problem, namely that of determining the
best linear system, may be stated as follows: Find functions
A(t) and o (t) such that

o
f [ p(s, g5 1, 2) - P*(ﬁy e; T, X)}z dx
L4

-

*
is minimal, where p 1is a solution of (4.10) with o(t)

replaced by ‘o’ (t).
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3. The Representation Problem

The remainder of the effort centered around the problem
of how to represent the random wind profiles to which a bpost
vehicle 1s subjected. This problem is intimmtely aaunaotgﬁ
with the nonlinearity problem--the appropriate representation
process being determined by the manner of analysis and the
representation of the system to which the random process is
applied as an excitation.

In view of the kpown variations of the wind profiles
with altitude, it is evident that the wind profiles cannot
be represented as a stationary process (as s function of
altitude), although the winds may possibly be considered
as stationary processes if the altitude is held fixed. The
next simplest process is one that is weakly astationary
(quasi~stationary, statiopary in the wide sense); that is,
although the probability-distribution function of the winds
i8 not invariant under translation with respect to altitude
h, the autocorrelation function R(h,, hy) 18 such that
R(h,, by) = R(h, - hy) (see (21, Chap.'ll, Art. 8).

If we define the function f£(A) by

o
(5.1) Ry - by = [ B R) rayan
: (¢ +]

then the random horizontal wind profile as a funetion of

h assumes the form
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- |
(5.2) ver) = [ &P T ay V)

-0
where, as before, the y(t) process is the mmzm
process with variance parameter 1. Thus, if h,{t) in&%
hy(t) are the altitudes of the nose and tail of the vekizle
at time t, &8 obtained frem the rigid-bedy equatiems, the
excitation function of the vehicle due to horizontal winds
may be represented as '\ o

h, (t)
(5.3) (g(t)} = [ (Qn, t)}V(n)an.

h, (t)
Here Qi(h, t) denotes the load on the i~th dynamical
variable per unit of horizontal wind velocity per unit of
vehicle length when the length along the vehicle is written
in terms of a difference between h and hl(t). Introducing

the function

1 4if h,(t) <h < h,(t),
P(n, t) = { 1087 S0 S Ry

0 otherwvise,

Eq. (5.3) can be written as

x>

(5.4)  (g(t)} = };ﬁgﬂfkr )] V() ¢(h, t)dn.

When Bq. (5.2) is substituted into (5.4), we then have

v o

(5.5) (g(t)) = [ (TG, )WEQY dr ,

-0
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where

¢ 4

(5.8 (T, ©)) = [ (&, 0] ¢¢, t)e'™ an,
x> !

Hence, in the case of a weakly stationary process, the |
excitation matrix (g(t)] assumes the particularly iiﬁﬁi§
torm (5.5), since {T(A, t)} is the matrix of Fourier :
transforms of known functions, as shows by (5.6). Bvem in
‘this simple case, however, it is evident from (5.8) that j
the process {g(t)] 1is no longer weakly stationmary. This
‘'will be the rule rather than the exception, since the rap%d
acceleration, attitude, and altitude changes of boost

vehicles will always result in the vehicle sensing » sig-
nificantly dig}&roat process than that which may provide
an acceptable representation process for the aerodynsmic
environment as a function of altitude.

Even if stationarity, weak stationarity, or some
egquivalent assumption is made, it turns out that little
actual progress can be msmde on the general problem of the
dynamics of boost vehicles. The effects of the non~
linearities and the obvious deficiencies in the 1iua&rzxaiion
‘are such that no general procedure appears acceptable in
all cases. At the present state of the art, each pﬁrﬁ3¢ﬁ§ar
design must be evaluated in its own right. The only present

procedure by which confidence can be established in the

design of boost vehicles under wind excitation is that of
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detailed digital simulation with the best available sample
functions for the wind excitations In fact, the unrm}.m:d
nature of the :;onim Wlﬂ m mz »t mz m

_one method of representation of the mimmt is wt!wp:b}.a
to any other, since neither method could lead to a mxgzé
validation without detailed digital simulation.



6. The Load Environment

Suppose that it were possible to obtain a solution
{u(t)] of tbe nonlinear problem (4.1) under a stochastic |
excitation {g(t)}. By adding ([u(t)] and the ct |
trajectory state, we would then know the complete dynamichl
adingly,
the dynamic stress state (bonding moments, etc.) L(x, t)

state, say {1UJ(t}], of the boost vehicle.

at a point on the vehicle a distance x from the nose of

the vehicle would be given by
(6.1) Léx, t) = (M(x, t)}T {LO)] ,

where T denotes transpose and Hi(x, t) denotes the Yomd
contribution at x due to the i-th dynamical wvariable.
If c(x, t) denotes the allowable load enviromment, the

vehicle will not fail so long as
(6.2) | Lu, t) | <ecix, t).

ldeally, we should like to calculate the probability
of (6.2) occurring for all x in the vehicle and for all
t in the time interval of interest. Unfortunately, this
problem is also analytically untractable; the most that e;n
be done is to attempt to apply Monte Carle simulatien
through detailed digital calculations of solutions of (4.1)

for a representative family of wind profiles. The situation
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is analogous ‘to ‘the problem of calculating the probability
distribution of the number of maxime per unit of time of B
random function of one variable. The result is unkpown,

even supposing & Gaussian stationary process, yet the nean
number of maxima which exceed mny given threshold is given

by the well~-knmown formula of Rice [3]. It thus turns out
that even if we could obtain acceptable solutions representing
the dynamical state of a boost vehicle when subjected to
stochastic representation, the ability to calculate the
probability of design would be lacking.
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